Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(3 i - 2 : 5 i + 9 : 1\right)$ | $0.46731907641680822590982708902611835716$ | $\infty$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((-95i+147)\) | = | \((i+1)\cdot(i+4)^{2}\cdot(-2i+7)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 30634 \) | = | \(2\cdot17^{2}\cdot53\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-743472i+319760$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-743472i+319760)\) | = | \((i+1)^{9}\cdot(i+4)^{6}\cdot(-2i+7)\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 654997072384 \) | = | \(2^{9}\cdot17^{6}\cdot53\) |
|
| |||||
| j-invariant: | $j$ | = | \( -\frac{24565}{1696} i + \frac{44217}{1696} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.46731907641680822590982708902611835716 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.934638152833616451819654178052236714320 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 2.9033179723945133413980486671043054830 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 2 \) = \(1\cdot2\cdot1\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.7135517468074485909953641924441352921 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.713551747 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.903318 \cdot 0.934638 \cdot 2 } { {1^2 \cdot 2.000000} } \\ & \approx 2.713551747 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((i+1)\) | \(2\) | \(1\) | \(I_{9}\) | Non-split multiplicative | \(1\) | \(1\) | \(9\) | \(9\) |
| \((i+4)\) | \(17\) | \(2\) | \(I_0^{*}\) | Additive | \(1\) | \(2\) | \(6\) | \(0\) |
| \((-2i+7)\) | \(53\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(3\) | 3B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3 and 9.
Its isogeny class
30634.1-a
consists of curves linked by isogenies of
degrees dividing 9.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.